Subalgebra A12+A41+A11E16
92 out of 119
Computations done by the calculator project.

Subalgebra type: A12+A41+A11 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A12+A41 .
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: A12: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, A41: (0, 0, 0, 0, 2, 2): 8, A11: (1, 0, 1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: g36, g2, g5+g6, g7
Positive simple generators: g36, g2, 2g6+2g5, g7
Cartan symmetric matrix: (21001200001/200002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2100120000800002)
Decomposition of ambient Lie algebra: Vω2+2ω3+ω4Vω1+2ω3+ω4V4ω3Vω2+2ω3Vω1+2ω3V2ω4V2ω3Vω1+ω22Vω4V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω4+6ψVω1+2ω3+4ψVω2+2ω3+ω4+2ψV4ω3V2ω4V2ω3Vω1+ω2Vω1+2ω3+ω42ψV0Vω2+2ω34ψVω46ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra.h3+h1g3g1g35g6+g5g7g33g21g11g34g24
weight0ω4ω4ω1+ω22ω32ω4ω1+2ω3ω2+2ω34ω3ω1+2ω3+ω4ω2+2ω3+ω4
weights rel. to Cartan of (centralizer+semisimple s.a.). 0ω46ψω4+6ψω1+ω22ω32ω4ω1+2ω3+4ψω2+2ω34ψ4ω3ω1+2ω3+ω42ψω2+2ω3+ω4+2ψ
Isotypic module decomposition over primal subalgebra (total 11 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0, 0, 0)Vω46ψ → (0, 0, 0, 1, -6)Vω4+6ψ → (0, 0, 0, 1, 6)Vω1+ω2 → (1, 1, 0, 0, 0)V2ω3 → (0, 0, 2, 0, 0)V2ω4 → (0, 0, 0, 2, 0)Vω1+2ω3+4ψ → (1, 0, 2, 0, 4)Vω2+2ω34ψ → (0, 1, 2, 0, -4)V4ω3 → (0, 0, 4, 0, 0)Vω1+2ω3+ω42ψ → (1, 0, 2, 1, -2)Vω2+2ω3+ω4+2ψ → (0, 1, 2, 1, 2)
Module label W1W2W3W4W5W6W7W8W9W10W11
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h3+h1
g3
g1
g1
g3
Semisimple subalgebra component.
g35
g2
g36
h2
h6+2h5+3h4+2h3+2h2+h1
g36
2g2
g35
Semisimple subalgebra component.
g6g5
h6+h5
g5+g6
Semisimple subalgebra component.
g7
h3+h1
2g7
g33
g13
g30
g9
g19
g26
g15
g25
g21
g21
g25
g15
g26
g19
g9
g30
g13
g33
g11
g6g5
h6+h5
3g53g6
6g11
g34
g8
g32
g31
g4
g14
g17
g29
g28
g10
g12
g20
g22
g23
g16
g18
g27
g24
g24
g27
g18
g16
g23
g22
g20
g12
g10
g28
g29
g17
g14
g4
g31
g32
g8
g34
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω4
ω4
ω4
ω4
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
2ω4
0
2ω4
ω1+2ω3
ω1+ω2+2ω3
ω1
ω2+2ω3
ω1+ω2
ω12ω3
ω2
ω1+ω22ω3
ω22ω3
ω2+2ω3
ω1ω2+2ω3
ω2
ω1+2ω3
ω1ω2
ω22ω3
ω1
ω1ω22ω3
ω12ω3
4ω3
2ω3
0
2ω3
4ω3
ω1+2ω3+ω4
ω1+ω2+2ω3+ω4
ω1+ω4
ω1+2ω3ω4
ω2+2ω3+ω4
ω1+ω2+ω4
ω1+ω2+2ω3ω4
ω12ω3+ω4
ω1ω4
ω2+ω4
ω2+2ω3ω4
ω1+ω22ω3+ω4
ω1+ω2ω4
ω12ω3ω4
ω22ω3+ω4
ω2ω4
ω1+ω22ω3ω4
ω22ω3ω4
ω2+2ω3+ω4
ω1ω2+2ω3+ω4
ω2+ω4
ω2+2ω3ω4
ω1+2ω3+ω4
ω1ω2+ω4
ω1ω2+2ω3ω4
ω22ω3+ω4
ω2ω4
ω1+ω4
ω1+2ω3ω4
ω1ω22ω3+ω4
ω1ω2ω4
ω22ω3ω4
ω12ω3+ω4
ω1ω4
ω1ω22ω3ω4
ω12ω3ω4
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω46ψ
ω46ψ
ω4+6ψ
ω4+6ψ
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
2ω4
0
2ω4
ω1+2ω3+4ψ
ω1+ω2+2ω3+4ψ
ω1+4ψ
ω2+2ω3+4ψ
ω1+ω2+4ψ
ω12ω3+4ψ
ω2+4ψ
ω1+ω22ω3+4ψ
ω22ω3+4ψ
ω2+2ω34ψ
ω1ω2+2ω34ψ
ω24ψ
ω1+2ω34ψ
ω1ω24ψ
ω22ω34ψ
ω14ψ
ω1ω22ω34ψ
ω12ω34ψ
4ω3
2ω3
0
2ω3
4ω3
ω1+2ω3+ω42ψ
ω1+ω2+2ω3+ω42ψ
ω1+ω42ψ
ω1+2ω3ω42ψ
ω2+2ω3+ω42ψ
ω1+ω2+ω42ψ
ω1+ω2+2ω3ω42ψ
ω12ω3+ω42ψ
ω1ω42ψ
ω2+ω42ψ
ω2+2ω3ω42ψ
ω1+ω22ω3+ω42ψ
ω1+ω2ω42ψ
ω12ω3ω42ψ
ω22ω3+ω42ψ
ω2ω42ψ
ω1+ω22ω3ω42ψ
ω22ω3ω42ψ
ω2+2ω3+ω4+2ψ
ω1ω2+2ω3+ω4+2ψ
ω2+ω4+2ψ
ω2+2ω3ω4+2ψ
ω1+2ω3+ω4+2ψ
ω1ω2+ω4+2ψ
ω1ω2+2ω3ω4+2ψ
ω22ω3+ω4+2ψ
ω2ω4+2ψ
ω1+ω4+2ψ
ω1+2ω3ω4+2ψ
ω1ω22ω3+ω4+2ψ
ω1ω2ω4+2ψ
ω22ω3ω4+2ψ
ω12ω3+ω4+2ψ
ω1ω4+2ψ
ω1ω22ω3ω4+2ψ
ω12ω3ω4+2ψ
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω46ψMω46ψMω4+6ψMω4+6ψMω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3M2ω4M0M2ω4Mω1+2ω3+4ψMω1+ω2+2ω3+4ψMω2+2ω3+4ψMω1+4ψMω1+ω2+4ψMω2+4ψMω12ω3+4ψMω1+ω22ω3+4ψMω22ω3+4ψMω2+2ω34ψMω1ω2+2ω34ψMω1+2ω34ψMω24ψMω1ω24ψMω14ψMω22ω34ψMω1ω22ω34ψMω12ω34ψM4ω3M2ω3M0M2ω3M4ω3Mω1+2ω3+ω42ψMω1+ω2+2ω3+ω42ψMω2+2ω3+ω42ψMω1+ω42ψMω1+2ω3ω42ψMω1+ω2+ω42ψMω1+ω2+2ω3ω42ψMω2+ω42ψMω12ω3+ω42ψMω2+2ω3ω42ψMω1ω42ψMω1+ω22ω3+ω42ψMω1+ω2ω42ψMω22ω3+ω42ψMω2ω42ψMω12ω3ω42ψMω1+ω22ω3ω42ψMω22ω3ω42ψMω2+2ω3+ω4+2ψMω1ω2+2ω3+ω4+2ψMω1+2ω3+ω4+2ψMω2+ω4+2ψMω2+2ω3ω4+2ψMω1ω2+ω4+2ψMω1ω2+2ω3ω4+2ψMω1+ω4+2ψMω22ω3+ω4+2ψMω1+2ω3ω4+2ψMω2ω4+2ψMω1ω22ω3+ω4+2ψMω1ω2ω4+2ψMω12ω3+ω4+2ψMω1ω4+2ψMω22ω3ω4+2ψMω1ω22ω3ω4+2ψMω12ω3ω4+2ψ
Isotypic characterM0Mω46ψMω46ψMω4+6ψMω4+6ψMω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3M2ω4M0M2ω4Mω1+2ω3+4ψMω1+ω2+2ω3+4ψMω2+2ω3+4ψMω1+4ψMω1+ω2+4ψMω2+4ψMω12ω3+4ψMω1+ω22ω3+4ψMω22ω3+4ψMω2+2ω34ψMω1ω2+2ω34ψMω1+2ω34ψMω24ψMω1ω24ψMω14ψMω22ω34ψMω1ω22ω34ψMω12ω34ψM4ω3M2ω3M0M2ω3M4ω3Mω1+2ω3+ω42ψMω1+ω2+2ω3+ω42ψMω2+2ω3+ω42ψMω1+ω42ψMω1+2ω3ω42ψMω1+ω2+ω42ψMω1+ω2+2ω3ω42ψMω2+ω42ψMω12ω3+ω42ψMω2+2ω3ω42ψMω1ω42ψMω1+ω22ω3+ω42ψMω1+ω2ω42ψMω22ω3+ω42ψMω2ω42ψMω12ω3ω42ψMω1+ω22ω3ω42ψMω22ω3ω42ψMω2+2ω3+ω4+2ψMω1ω2+2ω3+ω4+2ψMω1+2ω3+ω4+2ψMω2+ω4+2ψMω2+2ω3ω4+2ψMω1ω2+ω4+2ψMω1ω2+2ω3ω4+2ψMω1+ω4+2ψMω22ω3+ω4+2ψMω1+2ω3ω4+2ψMω2ω4+2ψMω1ω22ω3+ω4+2ψMω1ω2ω4+2ψMω12ω3+ω4+2ψMω1ω4+2ψMω22ω3ω4+2ψMω1ω22ω3ω4+2ψMω12ω3ω4+2ψ

Semisimple subalgebra: W_{4}+W_{5}+W_{6}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 315.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (266.67, 348.33)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (233.33, 381.67)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 315.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 315.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 315.00)



Made total 624 arithmetic operations while solving the Serre relations polynomial system.