Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra. | −h3+h1 | g3 | g1 | g35 | g6+g5 | g7 | g33 | g21 | g11 | g34 | g24 |
weight | 0 | ω4 | ω4 | ω1+ω2 | 2ω3 | 2ω4 | ω1+2ω3 | ω2+2ω3 | 4ω3 | ω1+2ω3+ω4 | ω2+2ω3+ω4 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | ω4−6ψ | ω4+6ψ | ω1+ω2 | 2ω3 | 2ω4 | ω1+2ω3+4ψ | ω2+2ω3−4ψ | 4ω3 | ω1+2ω3+ω4−2ψ | ω2+2ω3+ω4+2ψ |
Isotypical components + highest weight | V0 → (0, 0, 0, 0, 0) | Vω4−6ψ → (0, 0, 0, 1, -6) | Vω4+6ψ → (0, 0, 0, 1, 6) | Vω1+ω2 → (1, 1, 0, 0, 0) | V2ω3 → (0, 0, 2, 0, 0) | V2ω4 → (0, 0, 0, 2, 0) | Vω1+2ω3+4ψ → (1, 0, 2, 0, 4) | Vω2+2ω3−4ψ → (0, 1, 2, 0, -4) | V4ω3 → (0, 0, 4, 0, 0) | Vω1+2ω3+ω4−2ψ → (1, 0, 2, 1, -2) | Vω2+2ω3+ω4+2ψ → (0, 1, 2, 1, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω4 −ω4 | ω4 −ω4 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | 2ω4 0 −2ω4 | ω1+2ω3 −ω1+ω2+2ω3 ω1 −ω2+2ω3 −ω1+ω2 ω1−2ω3 −ω2 −ω1+ω2−2ω3 −ω2−2ω3 | ω2+2ω3 ω1−ω2+2ω3 ω2 −ω1+2ω3 ω1−ω2 ω2−2ω3 −ω1 ω1−ω2−2ω3 −ω1−2ω3 | 4ω3 2ω3 0 −2ω3 −4ω3 | ω1+2ω3+ω4 −ω1+ω2+2ω3+ω4 ω1+ω4 ω1+2ω3−ω4 −ω2+2ω3+ω4 −ω1+ω2+ω4 −ω1+ω2+2ω3−ω4 ω1−2ω3+ω4 ω1−ω4 −ω2+ω4 −ω2+2ω3−ω4 −ω1+ω2−2ω3+ω4 −ω1+ω2−ω4 ω1−2ω3−ω4 −ω2−2ω3+ω4 −ω2−ω4 −ω1+ω2−2ω3−ω4 −ω2−2ω3−ω4 | ω2+2ω3+ω4 ω1−ω2+2ω3+ω4 ω2+ω4 ω2+2ω3−ω4 −ω1+2ω3+ω4 ω1−ω2+ω4 ω1−ω2+2ω3−ω4 ω2−2ω3+ω4 ω2−ω4 −ω1+ω4 −ω1+2ω3−ω4 ω1−ω2−2ω3+ω4 ω1−ω2−ω4 ω2−2ω3−ω4 −ω1−2ω3+ω4 −ω1−ω4 ω1−ω2−2ω3−ω4 −ω1−2ω3−ω4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω4−6ψ −ω4−6ψ | ω4+6ψ −ω4+6ψ | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | 2ω4 0 −2ω4 | ω1+2ω3+4ψ −ω1+ω2+2ω3+4ψ ω1+4ψ −ω2+2ω3+4ψ −ω1+ω2+4ψ ω1−2ω3+4ψ −ω2+4ψ −ω1+ω2−2ω3+4ψ −ω2−2ω3+4ψ | ω2+2ω3−4ψ ω1−ω2+2ω3−4ψ ω2−4ψ −ω1+2ω3−4ψ ω1−ω2−4ψ ω2−2ω3−4ψ −ω1−4ψ ω1−ω2−2ω3−4ψ −ω1−2ω3−4ψ | 4ω3 2ω3 0 −2ω3 −4ω3 | ω1+2ω3+ω4−2ψ −ω1+ω2+2ω3+ω4−2ψ ω1+ω4−2ψ ω1+2ω3−ω4−2ψ −ω2+2ω3+ω4−2ψ −ω1+ω2+ω4−2ψ −ω1+ω2+2ω3−ω4−2ψ ω1−2ω3+ω4−2ψ ω1−ω4−2ψ −ω2+ω4−2ψ −ω2+2ω3−ω4−2ψ −ω1+ω2−2ω3+ω4−2ψ −ω1+ω2−ω4−2ψ ω1−2ω3−ω4−2ψ −ω2−2ω3+ω4−2ψ −ω2−ω4−2ψ −ω1+ω2−2ω3−ω4−2ψ −ω2−2ω3−ω4−2ψ | ω2+2ω3+ω4+2ψ ω1−ω2+2ω3+ω4+2ψ ω2+ω4+2ψ ω2+2ω3−ω4+2ψ −ω1+2ω3+ω4+2ψ ω1−ω2+ω4+2ψ ω1−ω2+2ω3−ω4+2ψ ω2−2ω3+ω4+2ψ ω2−ω4+2ψ −ω1+ω4+2ψ −ω1+2ω3−ω4+2ψ ω1−ω2−2ω3+ω4+2ψ ω1−ω2−ω4+2ψ ω2−2ω3−ω4+2ψ −ω1−2ω3+ω4+2ψ −ω1−ω4+2ψ ω1−ω2−2ω3−ω4+2ψ −ω1−2ω3−ω4+2ψ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω4−6ψ⊕M−ω4−6ψ | Mω4+6ψ⊕M−ω4+6ψ | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | M2ω4⊕M0⊕M−2ω4 | Mω1+2ω3+4ψ⊕M−ω1+ω2+2ω3+4ψ⊕M−ω2+2ω3+4ψ⊕Mω1+4ψ⊕M−ω1+ω2+4ψ⊕M−ω2+4ψ⊕Mω1−2ω3+4ψ⊕M−ω1+ω2−2ω3+4ψ⊕M−ω2−2ω3+4ψ | Mω2+2ω3−4ψ⊕Mω1−ω2+2ω3−4ψ⊕M−ω1+2ω3−4ψ⊕Mω2−4ψ⊕Mω1−ω2−4ψ⊕M−ω1−4ψ⊕Mω2−2ω3−4ψ⊕Mω1−ω2−2ω3−4ψ⊕M−ω1−2ω3−4ψ | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 | Mω1+2ω3+ω4−2ψ⊕M−ω1+ω2+2ω3+ω4−2ψ⊕M−ω2+2ω3+ω4−2ψ⊕Mω1+ω4−2ψ⊕Mω1+2ω3−ω4−2ψ⊕M−ω1+ω2+ω4−2ψ⊕M−ω1+ω2+2ω3−ω4−2ψ⊕M−ω2+ω4−2ψ⊕Mω1−2ω3+ω4−2ψ⊕M−ω2+2ω3−ω4−2ψ⊕Mω1−ω4−2ψ⊕M−ω1+ω2−2ω3+ω4−2ψ⊕M−ω1+ω2−ω4−2ψ⊕M−ω2−2ω3+ω4−2ψ⊕M−ω2−ω4−2ψ⊕Mω1−2ω3−ω4−2ψ⊕M−ω1+ω2−2ω3−ω4−2ψ⊕M−ω2−2ω3−ω4−2ψ | Mω2+2ω3+ω4+2ψ⊕Mω1−ω2+2ω3+ω4+2ψ⊕M−ω1+2ω3+ω4+2ψ⊕Mω2+ω4+2ψ⊕Mω2+2ω3−ω4+2ψ⊕Mω1−ω2+ω4+2ψ⊕Mω1−ω2+2ω3−ω4+2ψ⊕M−ω1+ω4+2ψ⊕Mω2−2ω3+ω4+2ψ⊕M−ω1+2ω3−ω4+2ψ⊕Mω2−ω4+2ψ⊕Mω1−ω2−2ω3+ω4+2ψ⊕Mω1−ω2−ω4+2ψ⊕M−ω1−2ω3+ω4+2ψ⊕M−ω1−ω4+2ψ⊕Mω2−2ω3−ω4+2ψ⊕Mω1−ω2−2ω3−ω4+2ψ⊕M−ω1−2ω3−ω4+2ψ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M0 | Mω4−6ψ⊕M−ω4−6ψ | Mω4+6ψ⊕M−ω4+6ψ | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | M2ω4⊕M0⊕M−2ω4 | Mω1+2ω3+4ψ⊕M−ω1+ω2+2ω3+4ψ⊕M−ω2+2ω3+4ψ⊕Mω1+4ψ⊕M−ω1+ω2+4ψ⊕M−ω2+4ψ⊕Mω1−2ω3+4ψ⊕M−ω1+ω2−2ω3+4ψ⊕M−ω2−2ω3+4ψ | Mω2+2ω3−4ψ⊕Mω1−ω2+2ω3−4ψ⊕M−ω1+2ω3−4ψ⊕Mω2−4ψ⊕Mω1−ω2−4ψ⊕M−ω1−4ψ⊕Mω2−2ω3−4ψ⊕Mω1−ω2−2ω3−4ψ⊕M−ω1−2ω3−4ψ | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 | Mω1+2ω3+ω4−2ψ⊕M−ω1+ω2+2ω3+ω4−2ψ⊕M−ω2+2ω3+ω4−2ψ⊕Mω1+ω4−2ψ⊕Mω1+2ω3−ω4−2ψ⊕M−ω1+ω2+ω4−2ψ⊕M−ω1+ω2+2ω3−ω4−2ψ⊕M−ω2+ω4−2ψ⊕Mω1−2ω3+ω4−2ψ⊕M−ω2+2ω3−ω4−2ψ⊕Mω1−ω4−2ψ⊕M−ω1+ω2−2ω3+ω4−2ψ⊕M−ω1+ω2−ω4−2ψ⊕M−ω2−2ω3+ω4−2ψ⊕M−ω2−ω4−2ψ⊕Mω1−2ω3−ω4−2ψ⊕M−ω1+ω2−2ω3−ω4−2ψ⊕M−ω2−2ω3−ω4−2ψ | Mω2+2ω3+ω4+2ψ⊕Mω1−ω2+2ω3+ω4+2ψ⊕M−ω1+2ω3+ω4+2ψ⊕Mω2+ω4+2ψ⊕Mω2+2ω3−ω4+2ψ⊕Mω1−ω2+ω4+2ψ⊕Mω1−ω2+2ω3−ω4+2ψ⊕M−ω1+ω4+2ψ⊕Mω2−2ω3+ω4+2ψ⊕M−ω1+2ω3−ω4+2ψ⊕Mω2−ω4+2ψ⊕Mω1−ω2−2ω3+ω4+2ψ⊕Mω1−ω2−ω4+2ψ⊕M−ω1−2ω3+ω4+2ψ⊕M−ω1−ω4+2ψ⊕Mω2−2ω3−ω4+2ψ⊕Mω1−ω2−2ω3−ω4+2ψ⊕M−ω1−2ω3−ω4+2ψ |